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Numer ica l  in tegra t ion  of the turbulent  bounda ry - l aye r  equat ions  [1-12] aided the es t ima t ion  of the p o s -  
s ibi l i t ies  of many  s e m i e m p i r i c a l  hypotheses ,  and the re f inement  of the l imi t s  of applicabi l i ty  of a number  of 
empi r i ca l  dependences and coeff ic ients .  Analysis  of the numer ica l  computat ions of many  authors shows that 
the computed cu rves  deviated not iceably f r o m  the exper imenta l  dependences [2-6, 11-14] fo r  an abrupt  change 
in the p r e s s u r e  gradient .  An espec ia l ly  s ignif icant  deviation is obse rved  upon approaching the separa t ion  zone, 
which is usual ly explained by not having taken account of the no rma l  Reynolds s t r e s s e s  and the t h r e e - d i m e n -  
s ional i ty of the flow [2, 3, 11, 13]. Not taking into account the influence of the p r e s s u r e  gradient  and smal l  
Reynolds number s  on the empi r i ca l  coeff icients  used in a lgebra ic  and different ia l  models  [2, 3, 10, 11] plays  a 
definite role .  The co r rec t ion  to the gradient  was  init ially taken into account in the Van Dr ies t  coefficient  [2, 3, 
5, 11, 12]. It tu rns  out that the approximate  Cebecci  [2, 12] and Case [5] fo rmulas  fo r  taking account of the 
p r e s s u r e  grad ien t  influence on the Van Dr i e s t  coeff icient  y ie ld  quite dist inct  numer i ca l  va lues .  It  is known that  
the influence of the p r e s s u r e  gradient  is man i fes ted  cons iderably  more  weakly in the nea r -wa l l  region than in 
the e x t e r i o r  [3, 11, 16]. Hence, the influence of the p r e s s u r e  gradient  on the coefficient  of the outer  domain will 
be mos t  substant ia l .  Not only the p re sen t  invest igat ion indicates  th is .  The numer ica l  expe r imen t  in [14] on 
m a t e r i a l s  f r o m  the Stanford conference  [15] showed that the mixing path length l, r e f e r r e d  to the boundary 
l aye r  th ickness  6, which is a ssumed  constant  in a no rma l  sect ion of the outer  region according to the P r a n d t l -  
Escud ie r  model ,  changes in a g rad ien t  flow. It depends on the p r e s s u r e  gradient ,  and fo r  an unfavorable g r a -  
client d e c r e a s e s  as i t  grows f r o m  the value 0.09 in g r ad i en t - f r ee  flows to the value 0.045 in nea r -wa l l  sec t ions .  
The constancy of the quantity l /6  in the computat ion resu l ted  in a sy s t ema t i c  exaggera t ion  of the sur face  f r i c -  
t ion coefficient  ef and a reduct ion in the values  of the f o r m - p a r a m e t e r  H, and did not p e r m i t  predic t ion of the 
poss ib le  flow separa t ion  [4]. A sti l l  g r e a t e r  diminution in the l/6 value as the unfavorable p r e s s u r e  gradient  
grew is shown in [6] (from 0.089 to 0.0125). In a number  of invest igat ions co r rec t ions  fo r  the grad ien t  o r  sma l l  
Reynolds number s  were  introduced in individual coeff icients  [2-6, 11, 12, 14]. However ,  no complete  inves t iga-  
t ion of the influence of the p r e s s u r e  gradient  and sma l l  Reynolds number s  has  apparent ly  been p e r f o r m e d .  As 
a rule ,  the influence of the p r e s s u r e  gradient  o r  of smal l  Reynolds number s  is e s t ima ted  on the bas i s  of eom-  
paririg values  of the su r face  f r ic t ion  coeff icient  cf, the f o r m - p a r a m e t e r  H, and the th ickness  of the momen tum 
loss  5"* with t es t s :  It is  hence of indubitable i n t e r e s t  to use  approximat ions  fo r  the veloci ty  prof i les  in these 
cases .  Moreover ,  a t w o - l a y e r  scheme  is  r ea l i zed  in a numer ica l  computat ion with a lgebra ic  models :  Differ-  
ent f o rmu la s  for  the turbulen t  v i scos i ty  coeff icient  will be taken in the n e a r  wall and outer  regions .  The so lu -  
t ions are  joined at  e i the r  a p rev ious ly  se lec ted  ordinate ,  o r  it is found during solution of the p rob l em by equat -  
ing values of the turbulent  v i scos i ty  coefficient  f r o m  the nea r -wa l l  and outer  regions [2, 3, 5, 11, 12]. However ,  
the p rob lem of matching the turbulent  v i scos i ty  coefficient  tu rns  out to be i nco r r ec t  [14]. The ordinate of the 
juncture point should dec rea se  as the posi t ive  p r e s s u r e  gradient  g rows ,  but it is e i the r  constant o r  st i l l  in-  
c r e a s e s  [14]. T h e r e f o r e ,  there  is a need fo r  fu r the r  invest igat ions and re f inements  of the a lgebra ic  models .  
And even m o r e  so  s ince p r e f e r ence  is given to a lgebra ic  models  fo r  a numer i ca l  computation in engineering 
p rac t i ce  [11]. Moreover ,  a lgebraic  models  [7, 10] a re  used  init ial ly in a t tempts  at a numer ica l  computat ion of 
a th ree -d imens iona l  turbulent  boundary layer .  

1. The purpose  of this pape r  is  to refine a single f o rmu la  for  the turbulent  v i scos i ty  coefficient  fo r  the 
whole boundary l ayer  [17-19], to cons t ruc t  approximate  express ions  fo r  the veloci ty  p rof i l es  taking pos i t ive  
and negative p r e s s u r e  gradients  into account,  to study the influence of the  p r e s s u r e  gradient  on the empi r i ca l  
coefficients  of the zones and regions of the turbulent  boundary l aye r .  To achieve these  ends,  an approximate ly  
analytic approach is used. A reasonable  combination of numer ica l  exper imen t s  and computat ions with approxi -  
mate ly  analytic solutions will p e r m i t  s ignificant  expansion of the poss ib i l i t i es  of invest igat ions.  Taken as the 
bas i s  fo r  this  r e s e a r c h  is a single s e m i e m p i r i c a l  f o rmu la  fo r  the turbulent  v i scos i ty  coefficient  fo r  the whole 
boundary layer ,  of the fo rm [17] 
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e = p• th I ~ + / •  (1.1) 

where  e is  the turbulent  v i scos i ty  coefficient;  u ,  an empi r i ca l  constant;  v, a function of the in te rmi t ten t  coeff i -  
cient type; v . ,  dynamic velocity;  A, C lause r  length p a r a m e t e r ;  l, mixing path length; 6, boundary l aye r  th ick-  
ness ;  r 0, f r ic t ion  s t r e s s  in the neighborhood of the wall; r w, f r ic t ion  s t r e s s  on the wall; ~ = y /6  ; r+  = 
70/7w;  7+ = 1 + ~ fo r  a pos i t ive  p r e s s u r e  gradient ;  and r+  = 1/(1  - ~V ) for  a negat ive gradient;  r = 
( 6 / r  w) a p / 3 x ;  p, p r e s s u r e ;  and p ,  dens i ty .  In a s t r e a m  with acce le ra t ion  the l inea r  dependence c~ the  tan-  
gential  s t r e s s  dis t r ibut ion i n t h e  neighborhood of the wall  can resu l t  in negative values  fo r  r < - 1 ,  and con- 
sequently,  in this case  the reduced nonl inear  dependence f r o m  [18] can be used.  The outer  boundary l aye r  
domain and the potential  flow a re  s e p a r a t e d  by a thin sub layer  through which turbul ized and unturbul ized fluid 
volume exchange occurs  because  of v iscous  f o r c e s .  Near  the wall the turbulence is p rac t i ca l ly  comple te ly  
continuous in t ime ,  but becomes  all the more  in te rmi t t en t  at the outer  boundary of the boundary l aye r .  Se-  
lected as the m e a s u r e  of in te rmi t tency  is the ra t io  between the t ime  in te rva l  during which turbulent  motion is 
obse rved  and the total t ime  interval ,  cal led the in te rmi t teney  coefficient.  If the behavior  of the change in the 
turbulent  v i scos i ty  coeff icient  is t r a c e d  in the outer  region,  then  it is detected that  n e a r  the n e a r - w a l l  region 
it v a r i e s  quite weakly but s t a r t s  to diminish rapidly  upon approaching the potential  flow. S imi l a r  behavior  of 
the turbulent  v i scos i ty  coefficient  is obse rved  in wakes and je ts .  Townsend showed tha t  the computed values  of 
the veloci ty  p rof i l es  for  the flow of a plane wake can b e  improved  considerably  if the effect ive coeff icient  of 
turbulent  v i scos i ty  were  cons idered  as the product  of the turbulent  v i scos i ty  coeff icient  and the in te rmi t tency  
coeff icient .  The Townsend assumpt ion  is now used  in many  pape r s  [2, 3, 9, 12] for  the approx imate  taking 
account  of the na ture  of the flow in je ts ,  wakes ,  and boundary l ayers .  In this paper ,  the approx imate  fo rmulas  
of Klebanoff and Cevecci  [2], l i nea r  [17], and that  p roposed  below were  used fo r  the coeff icient  of i n t e r m i t -  
tency.  It tu rns  out that  the l inea r  f o rm u l a  p e r m i t s  obtaining sa t i s fac to ry  resu l t s  fo r  the f r ic t ion  s t r e s s  and 
veloci ty  defect  p rof i l es  with constant  coeff icients  for  both the posi t ive and the negat ive p r e s s u r e  gradients  
[17, 18]. However ,  a subs tant ia l  d ivergence  is obse rved  between the computat ion [19] and expe r imen t  [16] for  
the turbulent  v i scos i ty  coefficient  on a f iat  p la te .  The Klebanoff and Cebecci  fo rmu la s  p e r m i t t e d  good a g r e e -  
ment  to be obtained with t e s t  fo r  the turbulent  v i scos i ty  coefficient  if the mixing path length in the t r a n s v e r s e  
sect ion is given by s e v e r a l  interpolat ion f o r m u l a s  [19]. In combination with the method of l ines ,  this approach 
pe rmi t t ed  organizat ion of a numer ica l  computat ion on a f lat  plate [8, 9]. The computa t ion  was also p e r f o r m e d  
on t w o - l a y e r  (viscous sub layer ,  turbulent  core) ,  and continuous models  [8, 9]. The f o r m u l a  7 = (1 - 7) 1/z 
pe rmi t t ed  obtaining f a i r  a g r e e m e n t  between computat ion and t e s t  fo r  the turbulent  v i scos i ty  coefficient on a f iat  
plate [16] if the known Prandt l  f o rmula  l = ky is used for  l outside the viscous and t rans i t ion  zones .  Taking 
account of the flow spec i f ics  in the viscous  and t rans i t ion  zones [3, 11, 16] r e su l t s  in a f o r m u l a  for  the mixing 
path length of the whole boundary l aye r  in this case  

shz [• + (t q- • l y+ --  30 I)] th [sh ~ (• 
l = k g t h  

kg + ~/T'++ 

where y+ = y v . / u ,  k, h l ,  ~2, ~3 a re  emp i r i ca l  coeff icients ,  and u is the coeff icient  of k inemat ic  v i s c o s i t y .  In 
construct ing interpolat ion fo rmu la s  for  l it is t aken  into account that  the tu rbu len t  v i scos i ty  coefficient is p r o -  
por t ional  to y m  in the wall  region and m is different  in each of the zones  [16]. As in [16] also,  it is a s sumed  
that  m =4  in the viscous  sub layer ,  m = 2 in the t rans i t ion  zone, and m = 1 in the wall  law zone. A compar i son  
between computed values  of the turbulent  v i scos i ty  coeff icient  and expe r imen t  on a f lat  plate indicates  totally 
sa t i s f ac to ry  ag reemen t  fo r  k = 0.4, h i = 0.064, ~3 = 0.0125, ~2 = 0.17458. Linear iza t ion  of the a rgument  of the 
function sinh2[y+~l(1 + ~31 Y+ - 30[)] pe rm i t s  obtaining a s impl i f ied  fo rmula  [19] 

l : ~y th sh2 (• th [sh 2 (ring+)] (1.2) 
ky + ~/r~+ 

which i s  convenient in that i t  p e r m i t s  finding approx imate  solutions for  the veloci ty  p ro f i l e s  in the t rans i t ion  
and viscous zones.  The computed values  of the turbulent  v i scos i ty  coefficient  f r o m  (1.1) and (1.2) indicate,  
when compared  with expe r imen t  [16], an insignificant  exces s  in the computation for  20 < y+ < 40. Numer ica l  
computat ions [9] and the reduced modif ied model  p e r m i t  the conclusion that  (1.1) and (1.2) a re  convenient in 
application.  

2. To c lar i fy  the influence of the posi t ive p r e s s u r e  gradient  on the veloci ty  prof i le ,  and on the zone and 
region coefficients ,  approx imate ly  analytic solutions were  constructed.  It was a s sumed  that  7 = 1 in obtain-  
Lug the approximate  solutions in the zones of the nea r -wa l l  reg ions .  An approximate  fo rmula  [19] 
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= .  (2.1) 

was found by the superposit ion principle f rom (1.1) and (1.2) fo r  the coefficient of total viscosity- in the t r an -  
sition zone, where/~ is the coefficient of dynamic viscosi ty .  This last  express ion permi t s  finding the depen- 
dence for the velocity profile in the t ransi t ion zone for  a positive p r e s s u r e  gradient  of the form 

if the approximation 

u + t + p+~+ t h  (~ly q-) - -  p'{- -- 

u + ~ u  p+= .~ Op 
(2,2) 

T = T~(i 3- p+y+). (2.3) 

is considered valid f o r  the f r ic t ion s t r e s s  in the near -wal l  region.  For  gradient - f ree  flow, (2.2) goes over  into 
the Rann formula  [16, 19, 20, 21] 

u + ~- (t/Ul)th (uly+), (2.4) 

which fa i r ly  descr ibes  tes t  even for  a flow in a tube with n 1 = 0.0688 in the t ransi t ion and viscous zones.  It is 
known that the turbulent  component is neglected in the viscous zone when determining the velocity profile.  
This profile will be obtained if tanh(~cly4) is expanded into se r i e s  and just  one t e r m  is used.  We ar r ive  at the 
same resul t  f rom (2.1) also s ince cosh(~ly ~) -* 1 as y + ~  0. Analysis of (2.1), (2.2), and (2.4) permi ts  the con- 
clusion that (2.2) is also applicable in the viscous zone. The profi le (2.4) is used in [20] for  a flow with posi -  
t ive p r e s s u r e  gradient  fo r  y+ = 27.5 and h 1 = 0.0688. However, n I = 1 /14  is obtained in flow investigations on 
a flat  plate [21]. ~ae nearby value ~l  = 0.072 is found in the numerical  exper iment  in [9]. Moreover ,  as the  un- 
favorable p r e s s u r e  gradient  grows,  the thickness of the viscous and t ransi t ion zones should decrease .  F o r m -  
ulas (1.1), (1.2), and (2.4) permi t  finding such a dependence 

V +G++i +2V +fu*' +c.  (2.5) 

in the wall law zone. In the case of a ze ro  p re s su re  gradient  (2.5) goes over into the known wall law 

u+ = (i/k) In y+ q- C. (2.6) 

The dependence (2.5) seems  to be a ~generalized wall law n f rom which two l imit  nlaws" will follow. Indeed, 
for  rw >> (Y/P)0p/0x we a r r ive  at the "wall law" (2.6), and in the case r w << ( y / p ) 0 p / 3 x  at the Wl/2 wall 
law" [3, 20]: 

u---- (2/k)~f (y/p)Op/Ox q- const. 

The velocity profi les  (2.2), (2.5), and (2.4), (2.6) pe rmi t  obt, ining the following dependences to evaluate C: 

C = ~ + p + ~ + t h ( u ~ , ) _ p _ +  i [  Vl+p+v . - - i  l_2V-l+p+y.]; ul xl In [oh (• : -  T In ]/i + p+y, ~ t (~..7) 

C = t h  ( x l y , ) / u  t - -  lny./k, (2.8) 

where y ,  is the value of y+ for  which the velocity profi les  of the t ransi t ion zone and the wall law merge.  For  
flow in a tube, the velocity profile (2.4) goes smoothly over  into (2.6) fo r  y ,  = 27.5. The value y ,  = 27.5 p e r -  
mits finding C = 5,6 for  k - 0.4. The flow on a plate assumes  that value of y ,  that depends on the selection of the 
values of ~l, k. In turn,  the constant  C depends on y , .  Analysis of experimental  resul ts  and empir ical  values 
of the constant C indicates a noticeable spread in the numerical  values of this quantity [16]. As is known, the 
reason  for  the spread is in the select ion of values of C by the experiments ,  which would yield the best  ag ree -  
ment between the computed values f rom (2.6) and the i r  experiments  [16]. Two numerica l  values of C are  used 
in this paper:  C = 4.78 for  k - 0.4 according to Klebanoff and Deal [16], and C = 5.0 for  k = 0.41 according to 
Cowles [15]. It is seen f rom (2.8) that C = 4.77 for  h I = 0.0688, y ,  = 49 and k = 0.4 while C = 5.008 for  k = 0.41. 
If ~ l  = 0.072, y ,  = 35 are taken, then C = 4.821847 for  k = 0.4 while C = 5.038637 for  k = 0.41. Therefore ,  an 
increase  in ~l  f rom 0.0688 to 0.072 will resul t  in a drop in y ,  f rom 49 to 35. The natural  question ar i ses  of 
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how to determine y, in the case of a positive pressure gradient and which of the two versions to use. For this 

p u r p o s e ,  the quan t i ty  

= V ,  + 

was c o n s i d e r e d ,  which was  a s s u m e d  c o n s t a n t  and equa l  to  i t s  va lue  f o r  a z e r o  g r a d i e n t .  In o t h e r  w o r d s ,  (2.9) 
was  u s e d  as  an equa t ion  to  f ind  y . .  F o r  a z e r o  p r e s s u r e  g r a d i e n t  and f o r  n i  = 0.0688, y ,  = 49, k = 0.4 we 
f ind  ~0 = 10.7856, whi le  f o r  ~ i  = 0.072, y .  = 35, k = 0.4 we have  ~0 = 2.723.  C o m p u t a t i o n s  and c o m p a r i s o n s  
wi th  e x p e r i m e n t s  [15] s h e w e d  tha t  the  v e l o c i t y  p r o f i l e s  f r o m  the  zone  of the  wa l l  law a r e  b a r e l y  r e s p o n s i v e  to  
which of the two v a l u e s  found f o r  ~0 i s  t a k e n .  F o r  a z e r o  p r e s s u r e  g r a d i e n t ,  the  p r e f e r e n c e  can  be  g iven  to  
)r = 0.072 in t he  F r a n s i t i o n  and v i s c o u s  z o n e s ,  wh ich  m e a n s  ~0 = 2.723.  In the  c a s e  of  a f low wi th  p o s i t i v e  
p r e s s u r e  g r a d i e n t ,  the  coe f f i c i en t s  k, x l ,  and  x2 e x p e r i e n c e  the  in f luence  of the  g r a d i e n t  [2, 5, 12, 22]. Ca re fu l  
a n a l y s i s  of the  c o m p u t a t i o n s  by the f o r m u l a s  p r e s e n t e d  and  t h e i r  c o m p a r i s o n  wi th  e x p e r i m e n t a l  r e s u l t s  [15, 23] 
and  o t h e r  c o m p u t a t i o n s  [5, 12] p e r m i t t e d  ob ta in ing  d e p e n d e n c e s  f o r  the  c o e f f i c i e n t s  k,  x l ,  and ~ u n d e r  cond i t ions  

of a p o s i t i v e  p r e s s u r e  g r a d i e n t :  

k = 0,4 + 0.182275(1 + p+)(t - -  e-~176 (2.10) 

= {[ t + 30,79p + ( ,  - o-"0""'91 f, (p+) + V '  + ,20  7,6/i  (p+)}; (2.11) 

z~ = • + 30,178p+), (2.12) 

i 0_.007 --  p + .  3- 3 0.04 --  p+ t7 8" op. = 0,072; 0,223; i s  t he  
w h e r e  ] ,  (p+) --  8 I 0,007 --  p+ [ - -  32 [ 0.04 -- p+ I {-" "~; ~ = "~-'~ a~' f~(P+) = i - -  [,(p+); • • -~ xm 

c o r r e c t i o n  f o r  s m a l l  Reyno lds  n u m b e r s  equa l  to  >tlR = 1 + 0.01(1 - e - g / ( l + z 2 ) ) ,  z = 10 -3 R * * ,  R** = 5 * u H / v ,  
u H i s  the  e x t e r n a l  f low v e l o c i t y ,  6* i s  the  d i s p l a c e m e n t  t h i c k n e s s .  A c o m p a r i s o n  be tw e e n  the  c o m p u t e d  v a l -  
ues  of u + (dashed  l ine)  by  u s i n g  the  f o r m u l a s  (2.2), (2.5), (2.7), (2.9)-(2.12) and the e x p e r i m e n t a l  r e s u l t s  (points)  
of F .  C l a u s e r  (id. 2200, x = 11) - a ,  A .  P e r r y  ( id.  2900, x = 12.5) - b,  W. N e w m a n  rid. 3500, x = 2.759) - e [15] 
i s  p r e s e n t e d  in  F i g .  1. A l s o  shown t h e r e  i s  the  w a l l  law (so l id  l ine)  (2.6) f o r  k = 0.41 and C = 5.0 [15]. As 
shou ld  h a v e  been  e x p e c t e d ,  in  the  c a s e  of s m a l l  v a l u e s  of y+ v e r y  s a t i s f a c t o r y  a g r e e m e n t  of the  c o m p u t e d  v a l u e s  
u s ing  (2.5) and  (2.6) i s  o b s e r v e d  with  the  e x p e r i m e n t a l  da ta .  H e n c e ,  f o r  s m a l l  v a l u e s  of y+, f o r  p r a c t i c a l  p u r -  
p o s e s  (2.6) with the  c o n s t a n t  c o e f f i c i e n t s  C and k can  be  u s e d .  As  the  v a l u e s  of y +  g row,  the  c o m p u t e d  v a l u e s  
of u + s t a r t  to  d e v i a t e  f r o m  the  e x p e r i m e n t a l .  The  n u m e r i c a l  v a l u e s  f r o m  (2.6) s t a r t  to  de v i a t e  f i r s t .  

It. i s  k n o w n t h a t  the  v e l o c i t y  d e f e c t  l aw i s  v a l i d  in the o u t e r  r e g i o n  and an i n t e r m e d i a t e  zone  of o v e r l a p  
of the  v e l o c i t y  d e f e c t  and wa l l  l aws  e x i s t s  [3, 11, 16]. To ob ta in  a p p r o x i m a t e  d e p e n d e n c e s  f o r  the  v e l o c i t y  
p r o f i l e s  in  the  v e l o c i t y  d e f e c t  and o v e r l a p  z o n e s ,  the  m e t h o d o l o g y  of [17, 18] was  u s e d  and (1 - ~)I /2  was  f i r s t  
e x p a n d e d  in to  a s e r i e s  wi th  two t e r m s  r e t a i n e d .  The fo l lowing  f o r m u l a s  w e r e  found: 

u -  = --s [ l n  U - -  2 In ( ] / i - - ~  (I)~. + 1) + (202 + 2 0  + t) 1/i.,,.+ cn  

- -  (I) + 1 t ,  0 ) ~ 3  20 [,I n+ '  - -  i ,I n+2 --  1~ (2 .13)  
i_ 

3r , - +  ,1 J - ~ x - ~  7 4 - i  0,5 . + 2  /-~-n~ ~. n ~ , l , ;  
1 + 2 o .  

u = @  . - ,  +--T--t,r- 
(2.14) 

- -  (2 + ~  \ W~--~ ' . + 2  /~ 

where 

+ 2 0 - 4 -  1) - -  

U-Un.  R1 I [ u - =  u. ' = T  - - l n ~ h + 2 1 n ( ] / l - f - 0 n ' + l ) - - ( 2 0 ~ - } -  

�9 ~ ' 30" 
2 + @  -~/f( 2 q- a P / ~  2 (2+O) .  A 

n = - - 2 , 5  4F § _ _ . 2 ' 5 +  4F / - - 6  F . , A ~ = ~ ;  

F = • 2 + • F1 + F.,; F 1 -- 02 ] / i  -}- O~h + (2(I)"- + 2 0  + t) 

2 --  (1)TI 1 2 -- 30'i 1 3 5(I) ~ -- 90 --  4 . 
X ~ l /1  + On~ - -  (i 4- ~)  ~ (1 + @n~) T + 2 t5m3 , 

~ 3 ,:i,+, , ~ ,3 
F~ = 0.5,1, ~ + .'h - -  - - K -  ~li - -  �9 - -  --" 24' 
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71 is the ordinate at which the veloci ty  defect and overlap zones are separated.  The ordinate 71 at which the 
velocity prof i les  f rom the defect (2.14) and the overlap (2.13) zones join was determined f rom the condition 
l(71+/2) / n A l =  ~i" For  g rad ien t - f ree  flows, for  the values of ~i = 1 and A 1 =3.875 [18], we find 71 = 0.2. If 
we take ~l = 0.72 and A 1 = 3.785, then we obtain 7/1 = 0.15. Both these values of 71 are  in the interval of s tand-  
ard  values [2, 16, 22]. However,  the logari thmic velocity distribution (2.6) s t a r t s  to deviate f rom the exper i -  
mental  fo r  values of ~l exceeding 0.15 [16]. Therefore,  ~l = 0.15 can be considered as the approximate bound- 
a ry  between the near-wal l  and the outer regions [16]. The overlap zone should not emerge beyond the scope of 
the near -wal l  region, and hence the value 71 = 0.15 is taken as the ordinate where the velocity profiles of the 
defect and overlap zones join. In the ease  of the presence  of a positive p r e s s u r e  gradient,  the coefficients 
• and ~l depend on the la t ter .  The experiments  of the Stanford conference [15] were used to determine the de-  
pendences of n and ~1 on the gradient,  as were also numerical  experiments  on the digital computer  Mir-2  
using the reduced approximate formulas ,  and the dependences of other authors [2, 5, 12]. Analysis of the r e -  
sults of computations and compar isons  with experiments permi t ted  obtaining approximate dependences in the 
fo rm 

• = • [0,00905 ~- 1/(74.6 + (2.4 ~- ~)2)]; (2.15) 
al = 0.09532ti/(1 ~- p+) -F 24,090229/(6.2i + ~)2, (2.16) 

where n R is the Cebecci  [12] correc t ion for  small  Reynolds number that equals 

t,55 R** 

+ 0 5 5 ( 1 _ o _ 0 . . W _ 0 . . ~ )  ~ = t 

A compar ison of the computed velocity defects (solid line) with experimental  resul ts  (points) of H. Ludwig 
and W. Tillman (id. 1200, x = 3.532) - a and G. Schubauer and P. Klebanoff (id. 2100, x = 25.4) - b is shown 
in Fig. 2. As a resul t  of the computations, it was detected that conservation of values of the coefficients f rom 
the gradient - f ree  flows in flows with positive gradient r esu l t s  in growth of the values of ~?l and n. Rotation 
of the velocity profile around a cer tain inner point is observed.  Values of the velocity grow in absolute mag-  
nitude near the wall and diminish near the outer  boundary. 

3. In the ease of flows with negative p re s su re  gradient ,  the resul ts  in See. 2 can be used for  @ >- - 1 .  
We hence examine flows with @ < - 1 .  In the t ransi t ion and viscous zones I P+Y+I < 1 [15], and hence, the 
resul ts  of Sec. 2 are  here  again suitable for  the velocity distribution. In the wall-taw zone, the express ion 

C : t § th (Uly,) - -  ~1 ~ In [cli (• - -  T In t +  ~ f ~  " 
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i s  o b t a i n e d  f o r  the  v e l o c i t y  d i s t r i b u t i o n .  The  d e p e n d e n c e  (2.9) i s  u s e d  to  c a l c u l a t e  y .  The a p p r o a c h  of Sec .  2 
and of [17, 18] was  u s e d  to  ob ta in  the  v e l o c i t y  d i s t r i b u t i o n s  i n t h e  d e f e c t  and  o v e r l a p  z o n e s .  The  fo l lowing  a p -  
p r o x i m a t i o n s  a r e  o b t a i n e d  

,[ 
u - =  ~- In - - r 2 4 7  ( - - r  

~ / ~ - - ~  ] , [ i  , l " + ~ - ,  0.5 ,,~+2 - 1  ] 

_ o.5(n -- ~) t [ n  '~+~ --  ~ n ~+~ t\1 u -  = ~ i  (@0+0"5~- l) ~ In t - -  (OA- t) n . ~ _  r -~ ~---i § W-+i 0.5 ~ ) j  at n~>n , ,  

w h e r e  
( xai~2 

R1 = T ,_In ~i--~--- O~l~ - -  i ( - -  r - -  t) ~ 1) 

r = l / i - -  @~;  

ffi 20 ~ -Jr 20 -~ t r --  I r~li 2@ Jr t = - -  arctg ( r - -  t) "V--,I ~ r 2 r 3 - 1 
(r r m+ l  (_r 1-(r 3r162 

F~= m+~162 t--n~ (0,5-t-r n~--i 
- r  4(e+t)" 

P r o c e s s i n g  the r e s u l t s  of c o m p u t a t i o n s  u s i n g  the  f o r m u l a s  c i t e d ,  and  a n a l y s i s  of the c o m p a r i s o n s  b e -  
t w e e n  c o m p u t a t i o n s  and e x p e r i m e n t s  [15] show tha t  even  f o r  a n e g a t i v e  p r e s s u r e  g r a d i e n t ,  (2.15), (2.16), (2.11) 
can  be  u s e d  f o r  ~t, c~ I, and  ~i"  As  r e g a r d s  the  c o e f f i c i e n t  k, (2.10) can  b e  u s e d  even  to  c a l c u l a t e  i t ,  bu t  the  d e -  
p e n d e n c e  

k = 0,4 + 58,510275(p+/~)(1 - -  e-~ 

r e s u l t s  in m o r e  s u c c e s s f u l  o u t c o m e s .  

The c o m p a r i s o n b e t w e e n  the  c o m p u t e d  v a l u e s  (dashed  l ine)  of u + by u s i n g  the f o r m u l a s  c i t e d  and  the  e x -  
p e r i m e n t a l  da t a  of G. Schubaue r  and P .  K lebanof f  (id.  2 i00 ,  x = 1.0) - a, H. H e r r i n g  and I. N o r b u r y  (id. 2800, 
x = 3) - b i s  shown in F i g .  3. The  wa l l  law (2.6) i s  shown f o r  k = 0.41 and C = 5.0 [15] by  the s o l i d  l i n e .  I t  i s  
s e e n  f r o m  the  c o m p a r i s o n  t ha t  (2.6) wi th  c o n s t a n t  c o e f f i c i e n t s  can  be u s e d  in  t he  w a l l - l a w  zone  wi th  s u f f i c i e n t  
a c c u r a c y  f o r  p r a c t i c e .  The  c o m p u t e d  v a l u e s  by  u s i n g  t h e  m e n t i o n e d  f o r m u l a s  p r a c t i c a l l y  co inc ide  in the  w a l l -  
law zone .  

C o m p u t e d  v a l u e s  of the  v e l o c i t y  d e f e c t  (dashes )  u -  and  e x p e r i m e n t  (points)  of H. Ludwig and  W. T i l l m a n  
(id. 1300, x = 2.282) - a, and I. Be l l  (id. 3100, x = 2.041) - b [15] a r e  c o m p a r e d  in  F i g .  4. The c o m p a r i s o n  b e -  
t w e e n  the c o m p u t e d  and t e s t  v a l u e s  shows t h a t  f o r  a n e g a t i v e  p r e s s u r e  g r a d i e n t  [15] s a t i s f a c t o r y  r e s u l t s  f o r  
the  v e l o c i t y  d e f e c t  can be o b t a i n e d  both wi th  and wi thou t  t ak ing  in to  account  the  c o r r e c t i o n s  to  the c o e f f i c i e n t s  

and  k f o r  s m a l l  Reyno lds  n u m b e r  and f o r  a g r a d i e n t .  The  d i s c r e p a n c i e s  b e t w e e n  the  n u m e r i c a l  v a l u e s  of 
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the computations are not outside the limits of the spread in the experimental results.  Experiment and com- 
puted values are compared in Fig. 4a with the mentioned corrections taken into account, and in Fig. 4b without 
taking the corrections into account. Computations in the velocity defect for both a negative and a positive 
gradient showed that the profiles are responsive to a change in and selection of the value of the outer boundary 
of the boundary layer  3. 

Shown in Fig. 5 is the comparison between the computed values (curve 1) by the method of lines by using 
(1.1) and (1.2) without taking account of the corrections and the experiment of H. Ludwig and W. Tillman (id. 
1200) for  the friction coefficient cf (crosses) and the thickness of the loss of momentum 6"* (points), as well 
as computations from [3] (curve 2) and [13] (curve 3). The computation shows the absence of sharp deviations 
from experiment for  a significant unfavorable gradient. 
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