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Numerical integration of the turbulent boundary-layer equations [1-12] aided the estimation of the pos-
sibilities of many semiempirical hypotheses, and the refinement of the limits of applicability of a number of
empirical dependences and coefficients. Analysis of the numerical computations of many authors shows that
the computed curves deviated noticeably from the experimental dependences [2-6, 11-14] for an abrupt change
in the pressure gradient. An especially significant deviation is observed upon approaching the separation zone,
which is usually explained by not having taken account of the normal Reynolds stresses and the three-dimen-
sionality of the flow [2, 3, 11, 13]. Not taking into account the influence of the pressure gradient and small
Reynolds numbers on the empirical coefficients used in algebraic and differential models [2, 3, 10, 11] plays a
definite role. The correction to the gradient was initially taken into account in the Van Driest coefficient [2, 3,
5, 11, 12]. & turns out that the approximate Cebecci [2, 12] and Case [5] formulas for taking account of the
pressure gradient influence on the Van Driest coefficient yield quite distinct numerical values. It is known that
the influence of the pressure gradient is manifested considerably more weakly in the near-wall region than in
the exterior [3, 11, 16]. Hence, the influence of the pressure gradient on the coefficient of the outer domain will
be most substantial. Not only the present investigation indicates this. The numerical experiment in [14] on
materials from the Stanford conference [15] showed that the mixing path length I, referred to the boundary
layer thickness 6, which is assumed constant in a normal section of the outer region according to the Prandtl—
Escudier model, changes in a gradient flow. I depends on the pressure gradient, and for an unfavorable gra-
dient decreages as it grows from the value 0.09 in gradient-free flows to the value 0.045 in near-wall sections.
The constancy of the quantity I /6 in the computation resulted in a systematic exaggeration of the surface fric-
tion coefficient cf and a reduction in the values of the form-parameter H, and did not permit prediction of the
possible flow separation [4]. A still greater diminution in the I/6 value as the unfavorable pressure gradient
grew is shown in [6] (from 0.089 to 0.0125). In a number of investigations corrections for the gradient or small
Reynolds numbers were introduced in individual coefficients [2-6, 11, 12, 14]. However, no complete investiga-
tion of the influence of the pressure gradient and small Reynolds numbers has apparently been performed. As
a rule, the influence of the pressure gradient or of small Reynolds numbers is estimated on the basis of com-
paring values of the surface friction coefficient c¢, the form-parameter H, and the thickness of the momentum
loss 6** with tests. I is hence of indubitable interest to use approximations for the velocity profiles in these
cases. Moreover, a two-layer scheme is realized in a numerical computation with algebraic models: Differ-
ent formulas for the turbulent viscosity coefficient will be taken in the near wall and outer regions., The solu-
tions are joined at either a previously selected ordinate, or it is found during solution of the problem by equat~
ing values of the turbulent viscosity coefficient from the near-wall and outer regions [2, 3, 5, 11, 12]. However,
the problem of matching the turbulent viscosity coefficient turns out to be incorrect [14]. The ordinate of the
juneture point should decrease as the positive pressuré gradient grows, but it is either constant or still in-
creases [14]. Therefore, there is a need for further investigations and refinements of the algebraic models.
And even more so since preference is given to algebraic models for a numerical computation in engineering
practice [11]. Moreover, algebraic models [7, 10] are used initially in attempts at a numerical computation of
a three-dimensional turbulent boundary layer.

1. The purpose of this paper is to refine a single formula for the turbulent viscosity coefficient for the
whole boundary layer [17-19], to construct approximate expressions for the velocity profiles taking pogitive
and negative pressure gradients into account, to study the influence of the pressure gradient on the empirical
coefficients of the zones and regions of the turbulent boundary layer. To achieve these ends, an approximately
analytic approach is used. A reasonable combination of numerical experiments and computations with approxi-
mately analytic solutions will permit significant expansion of the possibilities of investigations. Taken as the
basis for this research is a single semiempirical formula for the turbulent viscosity coefficient for the whole
boundary layer, of the form [17]
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& = pxAvgy thl Vi /xA, (1.1)

where ¢ is the turbulent viscosity coefficient; %, anempirical constant; v, a function of the intermittent coeffi-
cient type; vy, dynamic velocity; A, Clauser length parameter; I, mixing path length; 6, boundary layer thick-
ness; r,, friction stress in the neighborhood of the wall; 7y, friction stress on the wall; n = y/6; 14 =

7o/ Tws T+ =1+ &n for a positive pressure gradient; and 7, = 1/(1— 7)) for a negative gradient; & =

6/ Tw)ap /8X; p, pressure; and p, density.. In a stream with acceleration the linear dependence of the tan-
gential stress distribution in the neighborhood of the wall can result in negative values for & < —1, and con-
sequently, in this case the reduced nonlinear dependence from [18] can be used. The outer boundary layer
domain and the potential flow are separated by a thin sublayer through which turbulized and unturbulized fluid
volume exchange occurs because of viscous forces. Near the wall the turbulence is practically completely
continuous in time, but becomes all the more intermittent at the outer boundary of the boundary layer. Se~
lected as the measure of intermittency is the ratio between the time interval during which turbulent motion is
observed and the total time interval, called the intermittency coefficient. If the behavior of the change in the
turbulent viscosity coefficient is traced in the outer region, then it is detected that near the near-wall region
it varies quite weakly but starts to diminish rapidly upon approaching the potential flow. Similar behavior of
the turbulent viscosity coefficient is observed in wakes and jets. Townsend showed that the computed values of
the velocity profiles for the flow of a plane wake canbe improved considerably if the effective coefficient of
turbulent viscosity were considered as the product of the turbulent viscosity coefficient and the intermittency
coefficient., The Townsend assumption is now used in many papers [2, 3, 9, 12] for the approximate taking
account of the nature of the flow in jets, wakes, and boundary layers. In this paper, the approximate formulas
of Klebanoff and Cevecci {2], linear [17], and that proposed below were used for the coefficient of intermit-
tency. I turns out that the linear formula permits obtaining satisfactory results for the friction stress and
velocity defect profiles with constant coefficients for both the positive and the negative pressure gradients

17, 18]. However, a substantial divergence is observed between the computation {19] and experiment [16] for
the turbulent viscosity coefficient on a flat plate. The Klebanoff and Cebecci formulas permitted good agree-
ment to be obtained with test for the turbulent viscosity coefficient if the mixing path length in the transverse
section is given by several interpolation formulas [19]. In combination with the method of lines, this approach
permitted organization of a numerical computation on a flat plate [8, 91, The computation was also performed
on two-layer (viscous sublayer, turbulent core), and continuous models {8, 9]. The formula y =(1— ») 1/2
permitted obtaining fair agreement between computation and test for the turbulent viscosity coefficient on a flat
plate [16] if the known Prandtl formula ! =Lky is used for I outside the viscous and fransition zones. Taking
account of the flow specifics in the viscous and transition zones [3, 11, 16] results in a formula for the mixing
path length of the whole boundary layer in this case

sh? [x1y+ (1 + [yt — 30 I)] th [sh2 (u2y+)]
ky+ T, ’

l=rFkyth
. N

where y* =yvy/v, K %y nps %g are empirical coefficients, and v is the coefficient of kinematic viscosity. In
constructing interpolation formulas for [ it is taken into account that the turbulent viscosity coefficient is pro-
portional to ym in the wall region and m is different in each of the zones [16]. As in [16] also, it is assumed
that m =4 in the viscous sublayer, m =2 in the {ransition zone, and m =1 in the wall law zone. A comparison
between computed values of the turbulent viscosity coefficient and experiment on a flat plate indicates totally
satisfactory agreement for k = 0.4, wy = 0.064, ny = 0.0125, ny = 0.17458. Linearization of the argument of the
function sinh®[y*u(1 + ny| y*— 30[)] permits obtaining a simplified formula [19]

sh® (#,y*) th [sh® (x5 )]

WY ’
which is convenient in that it permits finding approximate solutions for the velocity profiles in the transition
and viscous zones. The computed values of the turbulent viscosity coefficient from (1.1) and (1.2) indicate,
when compared with experiment [16], an insignificant excess in the computation for 20 < y+ < 40. Numerical
computations [9] and the reduced modified model permit the conclusion that (1.1) and (1.2) are convenient in
application.

(1.2)

l=rkyth

2. To clarify the influence of the positive pressure gradient on the velocity profile, and on the zone and
region coefficients, approximately analytic solutions were constructed. I was assumed that y =1 in obtain~-
ing the approximate solutions in the zones of the near-wall regions. An approximate formula [19]
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ey = pch? (%), (2.1)

was found by the superposition principle from (1.1) and (1.2) for the coefficient of total viscosity in the tran-
sition zone, where u is the coefficient of dynamic viscosity. This last expression permits finding the depen-
dence for the velocity profile in the transition zone for a positive pressure gradient of the form

ut et -i-)zz:“y+ th, (ny?) — G In [eh ()], (2.2)
ut = v_u*7 P+ = plv:‘; 6_5,
if the approximation
T = T,(1 + pty?). .

is considered valid for the friction stress in the near-wall region. For gradient-free flow, (2.2) goes over into
the Rann formula [16, 19, 20, 21]

ut = (4/%;,)th (%), (2.4)

which fairly describes test even fora flow in a tube with %, = 0.0688 in the transition and viscous zones. I is
known that the turbulent component is neglected in the viscous zone when determining the velocity profile.

This profile will be obtained if tanh(miy"’) is expanded into series and just one term is used. We arrive at the
same result from (2.1) also since cosh(nly"') —1 as yt— 0. Analysis of (2.1), (2.2), and (2.4) permits the con-
clusion that (2.2) is also applicable in the viscous zone, The profile (2.4) is used in [20} for a flow with posi-
tive pressure gradient for y* =27.5 and ny = 0.0688, However, »; =1/14 is obtained in flow investigations on
a flat plate [21]. The nearby value »; =0.072 is found in the numerical experiment in [9]. Moreover, as the un-
favorable préssure gradient grows, the thickness of the viscous and transition zones should decrease. Form-
ulas (1.1), (1.2), and (2.4) permit finding such a dependence

Vitrtyt+1
in the wall law zone. In the case of a zero pressure gradient (2.5) goes over into the known wall law

ut = (1/k) In y+ + C. (2.6)

The dependence (2.5) seems to be a "generalized wall law" from which two limit "laws" will follow. Indeed,
for 7 > (v/p )8p/8 X we arrive at the "wall law” (2.6), and in the case 7y < 7/ p)0p/0x at the "1/2 wall
law® [3, 20]: :

u= (2/k)V (ylp)op/dz + const.

The velocity profiles (2.2), (2.5), and (2.4), (2.6) permit obtaining the following dependences to evaluate C:

14 phyt st 1 Vit pty. —1 ——
C=——~—th(%ly -———-ln[ch A —_—— ln————._._———=*————+2 1 + M 2.7
) ) "i (ye)] — % Vitery, +1 Vi+rptys (2.7)

C = th (%)%, — Iny/k, (2.8)

where y, is the value of y* for which the velocity profiles of the transition zone and the wall law merge. For
flow in a tube, the velocity profile (2.4) goes smoothly over into (2.68) for y4 =27.5. The value y, = 27.5 per-
mits finding C = 5.6 for k = 0.4. The flow on a plate assumes that value of yx that depends on the selection ofthe
values of %y, k. In turn, the constant C depends on y,. Analysis of experimental results and empirical values
of the constant C indicafes a noticeable spread in the numerical values of this quantity [16]. As is known, the
reason for the spread is in the selection of values of C by the experiments, which would yield the best agree-
ment between the computed values from (2.6) and their experiments [16]. Two numerical values of C are used
in this paper: C = 4.78 for k = 0.4 according to Klebanoff and Deal [16], and C =5.0 for k = 0.41 according to
Cowles [15]. It is seen from (2.8) that C =4.77 for g = 0.0688, y, =49 and k = 0.4 while C =5.008 for k = 0.41.
¥ wy =0.072, y, =35 are taken, then C = 4.821847 for k = 0.4 while C =5.038637 for k = 0.41. Therefore, an
increase in w; from 0.0688 to 0.072 will result in a drop in y, from 49 to 35. The natural question arises of
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how to determine y, in the case of a positive pressure gradient and which of the two versions to use. For this
purpose, the quantity

0y = sh? (”1y*)/(ky* Vi + P+y*)7 (2.9)

was considered, which was assumed constant and equal fo its value for a zero gradient. In other words, (2.9)
was used as an equation to find y,. For a zero pressure gradient and for »; =0.0688,y, =49, k =0.4 we

find oy =10.7856, while for »y = 0.072, Ve = 35, k = 0.4 we have o, =2.723. Computations and comparisons

with experiments [15] showed that the velocity profiles from the zone of the wall law are barely responsive to
which of the two values found for o, is taken. For a zero pressure gradient, the preference can be given to

%y = 0.072 in the transition and viscous zones, which means a, = 2.723. In the case of a flow with positive
pressure gradient, the coefficients k, %y, and v, experience the influence of the gradient 2, 5, 12, 22]. Careful
analysis of the computations by the formulas presented and their comparison with experimental results [15, 23]
and other computations [5, 12] permitted obtaining dependences for the coefficients k, %y, and , under conditions
of a positive pressure gradient: :

k=04 + 0.182275(1 + p+)(1 — e—0,320688), (2.10)
2, = atag (4 + 30.479p% (1 — e7*0%208) ] 5, (p¥) + Y 1+120.716p" £, (p*)}; (2.11)

%y = go(1 + 30,178p+), (2.12)

—pt 0.04 — p* 17 6* 3 . . . -

where fl (p+) - % ’g.ygg;—§+l + %lE-M—§+I + ﬁ; ﬁ“—"‘ .;;55; f2(p+) =1 — fl(p+)r Kip =~ 01072, Kag = Oa2237 *ig 18 the

correction for small Reynolds numbers equal to nyg =1 + 0.01(1 - o-14/(1+22)y , = 1073 R**, R¥* = Srug/ v,
uyy is the external flow velocity, 6* is the displacement thickness. A comparison between the computed val-
ues of ut (dashed line) by using the formulas (2.2), (2.5), (2.7), (2.9)-(2.12) and the experimental results (points)
of F. Clauser (id. 2200, x =11) — a, A. Perry (id. 2900, x =12.5) —b, W. Newman (id. 3500, x = 2.759) — ¢ {15]
is presented in Fig. 1. Also shown there is the wall law (solid line) (2.6) for k =0.41 and C =5.0 [15]. As
should have been expected, in the case of small values of yt very satisfactory agreement of the computed values
using (2.5) and (2.6) is observed with the experimental data. Hence, for small values of yt, for practical pur-
poses (2.6) with the constant coefficients C and k can be used. As the values of yt grow, the computed values

of ut start to deviate from the experimental. The numerical values from (2.6) start to deviate first.

E is known that the velocity defect law is valid in the outer region and an intermediate zone of overlap
of the velocity defect and wall laws exists {3, 11, 16]. To obtain approximate dependences for the velocity
profiles in the velocity defect and overlap zones, the methodology of [17, 18] was used and (1 — n)l/ % was first
expanded into a series with two terms retained. The following formulas were found:

u"=%[lnn—ZIh(V———1+(Dn+1)—!—(2®2+2‘I’+ NAELIS

O+t

20 <n"+1 —1
302

3

n—42

n+2
05T L R an m<ny (2.13)
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7y is the ordinate at which the velocity defect and overlap zones are separated. The ordinate 7, at which the
velocity profiles from the defect (2.14) and the overlap (2.13) zones join was determined from the condition
l('r},_/z) /%Ay = . For gradient-free flows, for the values of ¢y =1 and A; =3.875 (18], we find n; =0.2. If
we take o4 = 0.72 and A; =3.785, then we obtain 54 = 0.15. Both these values of 7 are in the interval of stand-
ard values [2, 16, 22]. However, the logarithmic velocity distribution (2.6) starts to deviate from the experi-
mental for values of n; exceeding 0.15 [16]. Therefore, n; = 0.15 can be considered as the approximate bound-
ary between the near-wall and the outer regions [16]. The overlap zone should not emerge beyond the scope of
the near-wall region, and hence the value n; = 0.15 is taken as the ordinate where the velocity profiles of the
defect and overlap zones join. Inthe case of the presence of a positive pressure gradient, the coefficients

» and ¢, depend on the latter. The experiments of the Stanford conference [15] were used to determine the de-
pendences of » and o, on the gradient, as were also numerical experiments on the digital computer Mir-2
using the reduced approximate formulas, and the dependences of other authors [2, 5, 12]. Analysis of the re-
sults of computations and comparisons with experiments permitted obtaining approximate dependences in the
form

% = xg [0,00905 + 1/(74.6 + (2.4 -+ B} 2.15)
a, = 0.0953211/(1 + p+) + 24,090229/(6.21 + B)2, (2.16)
where ng is the Cebecci [12] correction for small Reynolds number that equals

1,55 e
{085 (1 — o0V} T B T

Ap =

- A comparison of the computed velocity defects (solid line) with experimental results (points) of H. Ludwig
and W, Tillman (id. 1200, x = 3.532) — a and G. Schubauer and P. Klebanoff (id. 2100, x = 25.4) — b is shown
in Fig, 2. As a result of the computations, it was detected that conservation of values of the coefficients from
the gradient-free flows in flows with positive gradient results in growth of the values of 1, and n, Rotation
of the velocity profile around a certain inner point is observed. Values of the velocity grow in absolute mag-
nitude near the wall and diminish near the outer boundary.

3. In the case of flows with negative pressure gradient, the results in Sec. 2 can be used for & = —1.
We hence examine flows with & < —1. In the transition and viscous zones | pty+| < 1 [15], and hence, the
results of Sec. 2 are here again suitable for the velocity distribution. In the wall-law zone, the expression

w = L= Yi—pf®
k 14 ]/1_p+y+

p* , 1y
th (%4)) ) Infch (,y%)] — ¢ In
1

+C,

1— V1—P+.’/* .
14+ Vi—pty,

c—1trty,
nl
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is obtained for the velocity distribution. The dependence (2.9) is used to calculate y,. The approach of Sec. 2
and of {17, 18] was used to obtain the velocity distributions inthe defect and overlap zones. The following ap-
proximations are obtained

Vi—odn—1 20 41
o [1;_‘/1“@"_%_1 (__q)j1)3/23rctg(]/1—~®1] V=o=1)+

Vi—ay t 4t q  o5qnt2y '
+Te 1—}—@ ]+K_A_1[3 nt1 @ n42 :{_{—Rl at n<'ﬂ1,

- 1 ®+L05 . 1— (@41 , 0.5(q—1) 1(”“—1__ e g
u :M_A_;[—_((D+1)2n - + [y + 71 0.5 P at n>n1,

my = —0.5(aq 232) c1>+l/025 (o 22) @ - (a 2)

Vi—a@ 1
Ry=+ [ RIS 2‘1’“ arctg (VT— Oy, V=0 —1)

where

Vi—on,—1  (—0—1)3"
_V1-—q>n1] i[O.S(nl—i) _®405 1——(®+1)111].
1 2 R @+ 1)° —@ '
eri—CDm; ‘
4
n=—25—f+ 1/ (254 &) 6~ F=20(ul 4+ N A
2074301 r—1 My 2b41 (r——~1)'l/——‘1—— 2 -1
=i @ 071 Co—pn TETT_@Inr ‘§®(®+1)'_
@405, 1—(@+Dn,
=T ety PO +(®+1>‘(O5+¢)+4(“’+”

Processing the results of computations using the formulas cited, and analysis of the comparisons be-
tween computations and experiments [15] show that even for a negative pressure gradient, (2.15), (2.16), (2.11)
can be used for n, oy, and »y. As regards the coefficient k, (2.10) can be used even to calculate it, but the de-
pendence

k = 0,4 -+ 58,510275(pH/p)(1 — e—0-320688),

results in more successful outcomes.

The comparisonbetween the computed values (dashed line) of ut by using the formulas cited and the ex-
perimental data of G. Schubauer and P. Klebanoff (id. 2100, x =1.0) —a, H. Herring and I. Norbury (id. 2800,
X =3) —b is shown in Fig. 3. The wall law (2.6) is shown for k = 0.41 and C =5.0 [15] by the solid line. It is
seen from the comparison that (2.6) with constant coefficients can be used in the wall~law zone with sufficient
accuracy for practice. The compufed values by uging the mentioned formulas practically coincide in the wall~
law zone,

Computed values of the velocity defect (dashes) u™ and experiment (points) of H. Ludwig and W, Tillman
(id. 1300, x =2.282) — a, and L Bell (id. 3100, x =2.041) —b [15] are compared in Fig. 4. The comparison be~-
tween the computed and test values shows that for a negative pressure gradient [15] satisfactory results for
the velocity defect canbe obtained both with and without taking into account the corrections to the coefficients
» and k for small Reynolds number and for a gradient. The discrepancies between the numerical values of
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the computations are not outside the limits of the spread in the experimental results. Experiment and com-
puted values are compared in Fig. 4a with the mentioned corrections taken into account, and in Fig. 4b without
taking the corrections into account. Computations in the velocity defect for both a negative and a positive

gradient showed that the profiles are responsive to a change in and selection of the value of the outer boundary
of the boundary layer §.

Shown in Fig. 5 is the comparison between the computed values {curve 1) by the method of lines by using
{1.1) and (1.2) without taking account of the corrections and the experiment of H. Ludwig and W. Tillman (id.
1200) for the friction coefficient cf (crosses) and the thickness of the loss of momentum §** (points), as well
as computations from [3] (curve 2) and [13] (curve 3). The computation shows the absence of sharp deviations
from experiment for a significant unfavorable gradient.
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